study <- data.frame(
    Hours=c(0.50,0.75,1.00,1.25,1.50,1.75,1.75,2.00,2.25,2.50,2.75,3.00,
            3.25,3.50,4.00,4.25,4.50,4.75,5.00,5.50),
    Pass=c(0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1)
)
lr.out <- glm(Pass ~ Hours, data=study, family=binomial(link='logit'))
lr.out
## 
## Call:  glm(formula = Pass ~ Hours, family = binomial(link = "logit"), 
##     data = study)
## 
## Coefficients:
## (Intercept)        Hours  
##      -4.078        1.505  
## 
## Degrees of Freedom: 19 Total (i.e. Null);  18 Residual
## Null Deviance:       27.73 
## Residual Deviance: 16.06     AIC: 20.06
Model
\[log(\frac{p}{1-p}) = -4.078 + 1.505 \times Hours\]